Magnetic correlation length and universal amplitude of the lattice E_{8} Ising model

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1997 J. Phys. A: Math. Gen. 30 L479
(http://iopscience.iop.org/0305-4470/30/15/001)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.108
The article was downloaded on 02/06/2010 at 05:49

Please note that terms and conditions apply.

LETTER TO THE EDITOR

Magnetic correlation length and universal amplitude of the lattice E_{8} Ising model

M T Batchelor $\dagger \S$ and K A Seaton $\ddagger \|$ \|
\dagger Department of Mathematics, School of Mathematical Sciences, The Australian National University, Canberra, ACT 0200, Australia
\ddagger Centre for Mathematics and its Applications, The Australian National University, Canberra, ACT 0200, Australia

Received 13 May 1997

Abstract

The perturbation approach is used to derive the exact correlation length ξ of the dilute A_{L} lattice models in regimes 1 and 2 for L odd. In regime 2 the A_{3} model is the E_{8} lattice realization of the two-dimensional Ising model in a magnetic field h at $T=T_{\mathrm{c}}$. When combined with the singular part f_{s} of the free energy the result for the A_{3} model gives the universal amplitude $f_{\mathrm{s}} \xi^{2}=0.061728 \ldots$ as $h \rightarrow 0$ in precise agreement with the result obtained by Delfino and Mussardo via the form-factor bootstrap approach.

The integrable E_{8} quantum field theory of Zamolodchikov [1,2] is known to be in the same universality class as the two-dimensional Ising model in a magnetic field at $T=T_{\mathrm{c}}$. Moreover, an integrable lattice realization of the E_{8} Ising model is provided by the dilute A_{3} model [3, 4], upon which explicit exact and numerical calculations pertaining to the Ising model in a magnetic field can be performed [3-13].

In this letter we present the correlation length of the dilute A_{L} lattice models in regimes 1 and 2 for L odd, for which the off-critical perturbation is magnetic-like. This includes the magnetic correlation length for $L=3$, of relevance to the magnetic Ising model at $T=T_{\mathrm{c}}$.

The dilute A_{L} model is an exactly solvable, restricted solid-on-solid model defined on the square lattice. Each site of the lattice can take one of L possible (height) values, subject to the restriction that neighbouring sites of the lattice either have the same height, or differ by ± 1. The Boltzmann weights of the allowed height configurations of an elementary face of the lattice are $[3,4]$

$$
\begin{aligned}
& W\left(\begin{array}{ll}
a & a \\
a & a
\end{array}\right)= \frac{\vartheta_{1}(6 \lambda-u) \vartheta_{1}(3 \lambda+u)}{\vartheta_{1}(6 \lambda) \vartheta_{1}(3 \lambda)} \\
&-\left(\frac{S(a+1)}{S(a)} \frac{\vartheta_{4}(2 a \lambda-5 \lambda)}{\vartheta_{4}(2 a \lambda+\lambda)}+\frac{S(a-1)}{S(a)} \frac{\vartheta_{4}(2 a \lambda+5 \lambda)}{\vartheta_{4}(2 a \lambda-\lambda)}\right) \frac{\vartheta_{1}(u) \vartheta_{1}(3 \lambda-u)}{\vartheta_{1}(6 \lambda) \vartheta_{1}(3 \lambda)} \\
& W\left(\begin{array}{cc}
a \pm 1 & a \\
a & a
\end{array}\right)=W\left(\begin{array}{cc}
a & a \\
a & a \pm 1
\end{array}\right)=\frac{\vartheta_{1}(3 \lambda-u) \vartheta_{4}(\pm 2 a \lambda+\lambda-u)}{\vartheta_{1}(3 \lambda) \vartheta_{4}(\pm 2 a \lambda+\lambda)}
\end{aligned}
$$

§ E-mail address: murrayb@maths.anu.edu.au
|| E-mail address: k.seaton@latrobe.edu.au

- On leave from School of Mathematics, La Trobe University, Bundoora, Victoria 3083, Australia.

$$
\begin{align*}
& W\left(\begin{array}{cc}
a & a \\
a \pm 1 & a
\end{array}\right)=W\left(\begin{array}{cc}
a & a \pm 1 \\
a & a
\end{array}\right)=\left(\frac{S(a \pm 1)}{S(a)}\right)^{1 / 2} \frac{\vartheta_{1}(u) \vartheta_{4}(\pm 2 a \lambda-2 \lambda+u)}{\vartheta_{1}(3 \lambda) \vartheta_{4}(\pm 2 a \lambda+\lambda)} \\
& W\left(\begin{array}{cc}
a & a \pm 1 \\
a & a \pm 1
\end{array}\right)=W\left(\begin{array}{cc}
a \pm 1 & a \pm 1 \\
a & a
\end{array}\right) \\
& =\left(\frac{\vartheta_{4}(\pm 2 a \lambda+3 \lambda) \vartheta_{4}(\pm 2 a \lambda-\lambda)}{\vartheta_{4}^{2}(\pm 2 a \lambda+\lambda)}\right)^{1 / 2} \frac{\vartheta_{1}(u) \vartheta_{1}(3 \lambda-u)}{\vartheta_{1}(2 \lambda) \vartheta_{1}(3 \lambda)} \\
& W\left(\begin{array}{cc}
a \pm 1 & a \\
a & a \mp 1
\end{array}\right)=\frac{\vartheta_{1}(2 \lambda-u) \vartheta_{1}(3 \lambda-u)}{\vartheta_{1}(2 \lambda) \vartheta_{1}(3 \lambda)} \\
& W\left(\begin{array}{cc}
a & a \mp 1 \\
a \pm 1 & a
\end{array}\right)=-\left(\frac{S(a-1) S(a+1)}{S^{2}(a)}\right)^{1 / 2} \frac{\vartheta_{1}(u) \vartheta_{1}(\lambda-u)}{\vartheta_{1}(2 \lambda) \vartheta_{1}(3 \lambda)} \\
& W\left(\begin{array}{cc}
a & a \pm 1 \\
a \pm 1 & a
\end{array}\right)=\frac{\vartheta_{1}(3 \lambda-u) \vartheta_{1}(\pm 4 a \lambda+2 \lambda+u)}{\vartheta_{1}(3 \lambda) \vartheta_{1}(\pm 4 a \lambda+2 \lambda)} \\
& \quad+\frac{S(a \pm 1)}{\vartheta_{1}(u) \vartheta_{1}(\pm 4 a \lambda-\lambda+u)} \frac{\vartheta_{1}(3 \lambda) \vartheta_{1}(\pm 4 a \lambda+2 \lambda)}{\vartheta_{1}}=\frac{\vartheta_{1}(3 \lambda+u) \vartheta_{1}(\pm 4 a \lambda-4 \lambda+u)}{\vartheta_{1}(3 \lambda) \vartheta_{1}(\pm 4 a \lambda-4 \lambda)} \\
& \tag{1}\\
& \quad+\left(\frac{S(a \mp 1)}{S(a)} \frac{\vartheta_{1}(4 \lambda)}{\vartheta_{1}(2 \lambda)}-\frac{\vartheta_{4}(\pm 2 a \lambda-5 \lambda)}{\vartheta_{4}(\pm 2 a \lambda+\lambda)}\right) \frac{\vartheta_{1}(u) \vartheta_{1}(\pm 4 a \lambda-\lambda+u)}{\vartheta_{1}(3 \lambda) \vartheta_{1}(\pm 4 a \lambda-4 \lambda)} .
\end{align*}
$$

The crossing factors $S(a)$ are defined by

$$
\begin{equation*}
S(a)=(-1)^{a} \frac{\vartheta_{1}(4 a \lambda)}{\vartheta_{4}(2 a \lambda)} \tag{2}
\end{equation*}
$$

and $\vartheta_{1}(u), \vartheta_{4}(u)$ are standard elliptic theta functions of nome p

$$
\begin{align*}
& \vartheta_{1}(u)=\vartheta_{1}(u, p)=2 p^{1 / 4} \sin u \prod_{n=1}^{\infty}\left(1-2 p^{2 n} \cos 2 u+p^{4 n}\right)\left(1-p^{2 n}\right) \tag{3}\\
& \vartheta_{4}(u)=\vartheta_{4}(u, p)=\prod_{n=1}^{\infty}\left(1-2 p^{2 n-1} \cos 2 u+p^{4 n-2}\right)\left(1-p^{2 n}\right) \tag{4}
\end{align*}
$$

In the above weights the variable λ and the range of the spectral parameter u are given by $0<u<3 \lambda$ with

$$
\begin{equation*}
\lambda=\frac{s}{r} \pi \tag{5}
\end{equation*}
$$

where $r=4(L+1)$ and $s=L$ in regime 1 and $s=L+2$ in regime $2 \dagger$. The magnetic Ising point occurs in regime 2 with $\lambda=5 \pi / 16$.

The row transfer matrix of the dilute A models is defined on a periodic strip of width N as

$$
T_{\{a\}}^{\{b\}}=\prod_{j=1}^{N} W\left(\begin{array}{cc}
b_{j} & b_{j+1} \tag{6}\\
a_{j} & a_{j+1}
\end{array}\right)
$$

where $\{a\}$ is an admissible path of heights and $a_{N+1}=a_{1}, b_{N+1}=b_{1}$. For convenience we take N even.

The eigenvalues of the transfer matrix are $[6,12,13]$
$\Lambda(u)=\omega\left[\frac{\vartheta_{1}(2 \lambda-u) \vartheta_{1}(3 \lambda-u)}{\vartheta_{1}(2 \lambda) \vartheta_{1}(3 \lambda)}\right]^{N} \prod_{j=1}^{N} \frac{\vartheta_{1}\left(u-u_{j}+\lambda\right)}{\vartheta_{1}\left(u-u_{j}-\lambda\right)}$
\dagger The model has other regimes, but they are not of interest here.

$$
\begin{align*}
& +\left[\frac{\vartheta_{1}(u) \vartheta_{1}(3 \lambda-u)}{\vartheta_{1}(2 \lambda) \vartheta_{1}(3 \lambda)}\right]^{N} \prod_{j=1}^{N} \frac{\vartheta_{1}\left(u-u_{j}\right) \vartheta_{1}\left(u-u_{j}-3 \lambda\right)}{\vartheta_{1}\left(u-u_{j}-\lambda\right) \vartheta_{1}\left(u-u_{j}-2 \lambda\right)} \\
& +\omega^{-1}\left[\frac{\vartheta_{1}(u) \vartheta_{1}(\lambda-u)}{\vartheta_{1}(2 \lambda) \vartheta_{1}(3 \lambda)}\right]^{N} \prod_{j=1}^{N} \frac{\vartheta_{1}\left(u-u_{j}-4 \lambda\right)}{\vartheta_{1}\left(u-u_{j}-2 \lambda\right)} \tag{7}
\end{align*}
$$

where the N roots u_{j} are given by the Bethe equations

$$
\begin{equation*}
\omega\left[\frac{\vartheta_{1}\left(\lambda-u_{j}\right)}{\vartheta_{1}\left(\lambda+u_{j}\right)}\right]^{N}=-\prod_{k=1}^{N} \frac{\vartheta_{1}\left(u_{j}-u_{k}-2 \lambda\right) \vartheta_{1}\left(u_{j}-u_{k}+\lambda\right)}{\vartheta_{1}\left(u_{j}-u_{k}+2 \lambda\right) \vartheta_{1}\left(u_{j}-u_{k}-\lambda\right)} \tag{8}
\end{equation*}
$$

and $\omega=\exp (\mathrm{i} \pi \ell /(L+1))$ for $\ell=1, \ldots, L$.
There are several methods at hand to calculate the correlation length. Here we apply the perturbative approach initiated by Baxter [14, 15]. For L odd this involves perturbing away from the strong magnetic field limit at $p=1$. We thus introduce the variables

$$
\begin{equation*}
w=\mathrm{e}^{-2 \pi u / \epsilon} \quad \text { and } \quad x=\mathrm{e}^{-\pi^{2} / r \epsilon} \tag{9}
\end{equation*}
$$

conjugate to the nome $p=\mathrm{e}^{-\epsilon}$. The relevant conjugate modulus transformations are

$$
\begin{align*}
& \vartheta_{1}(u, p)=\left(\frac{\pi}{\epsilon}\right)^{1 / 2} \mathrm{e}^{-(u-\pi / 2)^{2} / \epsilon} E\left(w, q^{2}\right) \tag{10}\\
& \vartheta_{4}(u, p)=\left(\frac{\pi}{\epsilon}\right)^{1 / 2} \mathrm{e}^{-(u-\pi / 2)^{2} / \epsilon} E\left(-w, q^{2}\right) \tag{11}
\end{align*}
$$

where $q=\mathrm{e}^{-\pi^{2} / \epsilon}$ and

$$
\begin{equation*}
E(z, p)=\prod_{n=1}^{\infty}\left(1-p^{n-1} z\right)\left(1-p^{n} z^{-1}\right)\left(1-p^{n}\right) \tag{12}
\end{equation*}
$$

In the ordered limit ($p \rightarrow 1$ with u / ϵ fixed) the Boltzmann weights for L odd reduce to

$$
W\left(\begin{array}{ll}
d & c \tag{13}\\
a & b
\end{array}\right) \sim w^{H(d, a, b)} \delta_{a, c} .
$$

The function $H(d, a, b)$ is given explicity in [5], being required for the calculation of the local height probabilities. In this limit the row transfer matrix eigenspectra breaks up into a number of bands labelled by integer powers of w. In regime 1 there are $\frac{1}{2}(L+1)$ ground states and in regime 2 there are $\frac{1}{2}(L-1)$ ground states, each with eigenvalue $\lambda_{0}=1$. The bands of excitations are relevant to the calculation of the correlation length.

The number of states in the w band is $\frac{1}{2}(L-1) N$ in regime 1 and $\frac{1}{2}(L-3) N$ in regime 2. These correspond to introducing in all but one of the ground-state paths $\{a\}$ a single non-ground-state height, in any position. In particular, note that there are no excitations in the w band for $L=3$ in regime 2 . Thus for the magnetic Ising model we must consider excitations in the w^{2} band. These are harder to count, arising from a variety of both single and multiple deviations from ground-state paths. However, we observe numerically that (apart from when $N=2$) there are $4 N$ states in the w^{2} band.

We associate a given value of ℓ with each eigenvalue by numerically comparing the eigenspectrum at criticality $(p=0)$ with the eigenspectrum of the corresponding $\mathrm{O}(n)$ loop model [18] for finite $N \dagger$. Each eigenvalue can then be tracked to the ordered limit. The band of largest eigenvalues is seen to have the values $\ell=1, \ldots, \frac{1}{2}(L+1)$ in regime 1 and $\ell=1, \ldots, \frac{1}{2}(L-1)$ in regime 2 .

[^0]Setting $w_{j}=\mathrm{e}^{-2 \pi u_{j} / \epsilon}$, the eigenvalues (7) can be written

$$
\begin{align*}
\Lambda(w)=\omega[& \left.\frac{E\left(x^{4 s} / w, x^{2 r}\right) E\left(x^{6 s} / w, x^{2 r}\right)}{E\left(x^{4 s}, x^{2 r}\right) E\left(x^{6 s}, x^{2 r}\right)}\right]^{N} \prod_{j=1}^{N} w_{j}^{1-2 s / r} \frac{E\left(x^{2 s} w / w_{j}, x^{2 r}\right)}{E\left(x^{2 s} w_{j} / w, x^{2 r}\right)} \\
& +\left[\frac{x^{2 s}}{w} \frac{E\left(w, x^{2 r}\right) E\left(x^{6 s} / w, x^{2 r}\right)}{E\left(x^{4 s}, x^{2 r}\right) E\left(x^{6 s}, x^{2 r}\right)}\right]^{N} \prod_{j=1}^{N} w_{j} \frac{E\left(w / w_{j}, x^{2 r}\right) E\left(x^{6 s} w_{j} / w, x^{2 r}\right)}{E\left(x^{2 s} w_{j} / w, x^{2 r}\right) E\left(x^{4 s} w_{j} / w, x^{2 r}\right)} \\
& +\omega^{-1}\left[x^{2 s} \frac{E\left(w, x^{2 r}\right) E\left(x^{2 s} / w, x^{2 r}\right.}{E\left(x^{4 s}, x^{2 r}\right) E\left(x^{6 s}, x^{2 r}\right)}\right]^{N} \prod_{j=1}^{N} w_{j}^{2 s / r} \frac{E\left(x^{8 s} w_{j} / w, x^{2 r}\right)}{E\left(x^{4 s} w_{j} / w, x^{2 r}\right)} . \tag{14}
\end{align*}
$$

The Bethe equations (8) are now
$\omega\left[w_{j} \frac{E\left(x^{2 s} / w_{j}, x^{2 r}\right)}{E\left(x^{2 s} w_{j}, x^{2 r}\right)}\right]^{N}=-\prod_{k=1}^{N} w_{k}^{2 s / r} \frac{E\left(x^{2 s} w_{j} / w_{k}, x^{2 r}\right) E\left(x^{4 s} w_{k} / w_{j}, x^{2 r}\right)}{E\left(x^{2 s} w_{k} / w_{j}, x^{2 r}\right) E\left(x^{4 s} w_{j} / w_{k}, x^{2 r}\right)}$.
The calculation of the largest eigenvalue proceeds from the $x \rightarrow 0$ limit with w fixed in a similar manner to that for the eight-vertex [16] and CSOS [17] models. Each of the degenerate ground states has a different root distribution $\left\{w_{j}\right\}$ on the unit circle, depending on ℓ. Defining the free energy per site as $f=N^{-1} \log \Lambda_{0}$, our final result is
$f=4 \sum_{k=1}^{\infty} \frac{\cosh [(5 \lambda-\pi) \pi k / \epsilon] \cosh (\pi \lambda k / \epsilon) \sinh (\pi u k / \epsilon) \sinh [(3 \lambda-u) \pi k / \epsilon]}{k \sinh \left(\pi^{2} k / \epsilon\right) \cosh (3 \pi \lambda k / \epsilon)}$
in agreement with the previous calculations via the inversion relation method [3-5].
In regime 1 , the leading eigenvalue in the w band has $\ell=\frac{1}{2}(L+1)+1$. The root distribution has $N-1$ roots on the unit circle and a 1 -string excitation located exactly at $w_{N}=-x^{r}$. Applying perturbative arguments along the lines of [17] yields the leading excitation in the w band to be

$$
\begin{equation*}
\frac{\Lambda_{1}}{\Lambda_{0}}=w \frac{E\left(-x^{2 s} / w, x^{12 s}\right) E\left(-x^{4 s} / w, x^{12 s}\right)}{E\left(-x^{2 s} w, x^{12 s}\right) E\left(-x^{4 s} w, x^{12 s}\right)} . \tag{17}
\end{equation*}
$$

At the isotropic point $w=x^{3 s}$ this reduces to

$$
\begin{equation*}
\frac{\Lambda_{1}}{\Lambda_{0}}=x^{s} \frac{E^{2}\left(-x^{s}, x^{12 s}\right)}{E^{2}\left(-x^{5 s}, x^{12 s}\right)}=\left[\frac{\vartheta_{4}\left(\pi / 12, p^{\pi / 6 \lambda}\right)}{\vartheta_{4}\left(5 \pi / 12, p^{\pi / 6 \lambda}\right)}\right]^{2} . \tag{18}
\end{equation*}
$$

For $L=3$ in regime 2 extensive numerical investigations of the Bethe equations have led to a convincing conjecture for the thermodynamically significant strings [6,8]. We find that the leading excitation in the w^{2} band is a 2 -string with $\ell=2$. However, the state is originally a 1 -string for small p. Such behaviour has been discussed in [9]. Tracking this state with increasing p reveals that the 2 -string is exactly located at $-x^{ \pm 11}$ in the limit $p=1$. There are finite-size deviations away from this position for small N and $0<p<1$. The location we find for this string is in accord with the previous numerical work $[6,8]$. Applying the perturbation arguments in this case yields the leading excitation in the w^{2} band for $L=3$ to be
$\frac{\Lambda_{2}}{\Lambda_{0}}=w^{2} \frac{E\left(-x / w, x^{60}\right) E\left(-x^{11} / w, x^{60}\right) E\left(-x^{31} w, x^{60}\right) E\left(-x^{41} w, x^{60}\right)}{E\left(-x w, x^{60}\right) E\left(-x^{11} w, x^{60}\right) E\left(-x^{31} / w, x^{60}\right) E\left(-x^{41} / w, x^{60}\right)}$.
At the isotropic point $w=x^{15}$ this reduces to
$\frac{\Lambda_{2}}{\Lambda_{0}}=x^{28} \frac{E^{2}\left(-x^{4}, x^{60}\right) E^{2}\left(-x^{14}, x^{60}\right)}{E^{2}\left(-x^{16}, x^{60}\right) E^{2}\left(-x^{26}, x^{60}\right)}=\left[\frac{\vartheta_{4}\left(\pi / 15, p^{8 / 15}\right) \vartheta_{4}\left(7 \pi / 30, p^{8 / 15}\right)}{\vartheta_{4}\left(4 \pi / 15, p^{8 / 15}\right) \vartheta_{4}\left(13 \pi / 30, p^{8 / 15}\right)}\right]^{2}$.

The correlation length ξ can be obtained either by integrating over the relevant band of eigenvalues or via the leading eigenvalue in the band at the isotropic point (see, e.g., [17]). Doing the latter we have

$$
\begin{equation*}
\xi^{-1}=-\log \frac{\Lambda}{\Lambda_{0}} \tag{21}
\end{equation*}
$$

where Λ is the relevant leading eigenvalue. Our final results are thus

$$
\begin{equation*}
\xi^{-1}=2 \log \left[\frac{\vartheta_{4}\left(5 \pi / 12, p^{\pi / 6 \lambda}\right)}{\vartheta_{4}\left(\pi / 12, p^{\pi / 6 \lambda}\right)}\right] \tag{22}
\end{equation*}
$$

for L odd in regime 1 , with

$$
\begin{equation*}
\xi^{-1}=2 \log \left[\frac{\vartheta_{4}\left(4 \pi / 15, p^{8 / 15}\right) \vartheta_{4}\left(13 \pi / 30, p^{8 / 15}\right)}{\vartheta_{4}\left(\pi / 15, p^{8 / 15}\right) \vartheta_{4}\left(7 \pi / 30, p^{8 / 15}\right)}\right] \tag{23}
\end{equation*}
$$

for $L=3$ in regime 2 .
The derivation of the correlation length for $L \neq 3$ in regime 2 is complicated. In this regime the leading excitation in the w band has $\ell=\frac{1}{2}(L-1)+1$ and, like the leading 2 -string in the w^{2} band for $L=3$, it begins life for small N and $p \simeq 0$ as a 1 -string. We have not pursued this further. Nevertheless, we have numerically observed that the final result (17) also applies to the leading w band excitation in regime 2 . We thus believe that the correlation length (22) and the corresponding exponents (25) below also hold in regime 2 for $L \neq 3$.

It follows from (22) that the correlation length diverges at criticality as

$$
\begin{equation*}
\xi \sim \frac{1}{4 \sqrt{3}} p^{-v_{h}} \quad \text { as } p \rightarrow 0 \tag{24}
\end{equation*}
$$

where the correlation length exponent v_{h} is given by

$$
v_{h}=\frac{r}{6 s}= \begin{cases}\frac{2(L+1)}{3 L} & \text { regime } 1 \tag{25}\\ \frac{2(L+1)}{3(L+2)} & \text { regime } 2\end{cases}
$$

The correlation length exponents are seen to satisfy the general scaling relation $2 v_{h}=1+1 / \delta$, which follows from the relation

$$
\begin{equation*}
f_{\mathrm{s}} \xi^{2} \sim \text { constant } \tag{26}
\end{equation*}
$$

where $f_{\mathrm{s}} \sim p^{1+1 / \delta}$ is the singular part of the bulk free energy and the exponents δ are those following from the singular behaviour of (16) [3-5] \dagger.

The magnetic Ising case at $\lambda=5 \pi / 16$ is of particular interest. From (16) we find

$$
\begin{equation*}
f_{\mathrm{s}} \sim 4 \sqrt{3} \frac{\sin (\pi / 5)}{\cos (\pi / 30)} p^{16 / 15} \quad \text { as } p \rightarrow 0 \tag{27}
\end{equation*}
$$

On the other hand, from (23) we have

$$
\begin{equation*}
\xi \sim \frac{1}{8 \sqrt{3} \sin (\pi / 5)} p^{-8 / 15} \quad \text { as } p \rightarrow 0 \tag{28}
\end{equation*}
$$

Combining these results gives the universal magnetic Ising amplitude

$$
\begin{equation*}
f_{\mathrm{s}} \xi^{2}=\frac{1}{16 \sqrt{3} \sin (\pi / 5) \cos (\pi / 30)}=0.061728589 \ldots \quad \text { as } p \rightarrow 0 \tag{29}
\end{equation*}
$$

\dagger The same correlation length exponents should hold for L even, for which the integrable perturbation is thermallike. The scaling relation is now $2 v_{t}=2-\alpha$, where v_{t} and α are as given in (25) and [3-5], respectively. In particular, (25) gives the Ising value $v_{t}=1$ for $L=2$ in regime 1 , as expected.

This is in precise agreement with the field-theoretic result obtained recently by Delfino and Mussardo, starting from Zamolodchikov's S-matrix and using the form-factor bootstrap approach [17, 18]. Full details of our calculations will be given elsewhere.

It is a pleasure to thank John Cardy and Ole Warnaar for some helpful remarks. The work of KAS has been facilitated by a Commonwealth Staff Development Fund grant, administered by the Academic Development Unit of La Trobe University. The work of MTB has been supported by the Australian Research Council.

References

[1] Zamolodchikov A B 1989 Adv. Stud. Pure Math. 19641
[2] Zamolodchikov A B 1989 Int. J. Mod. Phys. A 44235
[3] Warnaar S O, Nienhuis B and Seaton K A 1992 Phys. Rev. Lett. 69710
[4] Warnaar S O, Nienhuis B and Seaton K A 1993 Int. J. Mod. Phys. B 73727
[5] Warnaar S O, Pearce P A, Seaton K A and Nienhuis B 1994 J. Stat. Phys. 74469
[6] Bazhanov V V, Nienhuis B and Warnaar S O 1994 Phys. Lett. 322B 198
[7] Warnaar S O and Pearce P A 1994 J. Phys. A: Math. Gen. 27 L891
[8] O'Brien D L and Pearce P A 1995 J. Phys. A: Math. Gen. 284891
[9] Grimm U and Nienhuis B 1997 Phys. Rev. E 555011
[10] McCoy B M and Orrick W P Preprint hep-th/9611071
[11] Batchelor M T, Fridkin V and Zhou Y K 1996 J. Phys. A: Math. Gen. 29 L61
[12] Zhou Y K and Batchelor M T 1997 Nucl. Phys. B 485646
[13] Seaton K A and Scott L C 1997 q-Trinomial coefficients and the dilute A model, La Trobe University Technical Report no 11
[14] Zhou Y K, Pearce P A and Grimm U 1995 Physica A 222261
[15] Zhou Y K 1996 Int. J. Mod. Phys. B 103481
[16] Baxter R J 1982 Exactly Solved Models in Statistical Mechanics (London: Academic)
[17] Pearce P A and Batchelor M T 1990 J. Stat. Phys. 6077
[18] Warnaar S O and Nienhuis B 1993 J. Phys. A: Math. Gen. 262301
[19] Fateev V A 1994 Phys. Lett. 324B 45
[20] Delfino G and Mussardo G 1995 Nucl. Phys. B 455724

[^0]: \dagger Strictly speaking we compare with the eigenspectrum of the corresponding vertex model with seam ω.

